Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 35(19): 7957-7966, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37840777

RESUMO

Ferrofluids have been extensively employed in industrial, environmental, and biomedical areas. Among them, fluorous ferrofluids are of particular interest because of the biorthogonal nature of perfluorocarbons (PFCs). However, the noninteracting nature of PFCs as well as challenges in functionalization of nanoparticle surfaces with fluorous ligands has limited their applications, especially in biomedicine. In particular, commercially available fluorous ferrofluids are stabilized using ionic surfactants with charged groups that physically interact with a wide range of charged biological molecules. In this paper, we developed a unique two-phase ligand attachment strategy to render stable fluorous ferrofluids using nonionic surfactants. The superparamagnetic Fe3O4 or MnFe2O4 core of the magnetic nanoparticles, the magnetic component of the ferrofluid, was coated with a silica shell containing abundant surface hydroxyl groups, thereby enabling the installation of fluorous ligands through stable covalent, neutral, siloxane bonds. We explored chemistry-material relationships between different ligands and PFC solvents and found that low-molecular-weight ligands can assist with the installation of high-molecular-weight ligands (4000-8000 g/mol), allowing us to systematically control the size and thickness of ligand functionalization on the nanoparticle surface. By zero-field-cooled magnetization measurements, we studied how the ligands affect magnetic dipole orientation forces and observed a curve flattening that is only associated with the ferrofluids. This work provided insight into ferrofluids' dependence on interparticle interactions and contributed a methodology to synthesize fluorous ferrofluids with nonionic surfactants that exhibit both magnetic and chemical stability. We believe that the doped MnFe2O4 fluorous ferrofluid has the highest combination of stability and magnetization reported to date.

2.
J Am Chem Soc ; 144(37): 16792-16798, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36084194

RESUMO

Stimuli-responsive materials are exploited in biological, materials, and sensing applications. We introduce a new endogenous stimulus, biomacromolecule crowding, which we achieve by leveraging changes in thermoresponsive properties of polymers upon high concentrations of crowding agents. We prepare poly(2-oxazoline) amphiphiles that exhibit lower critical solution temperatures (LCST) in serum above physiological temperature. These amphiphiles stabilize oil-in-water nanoemulsions at temperatures below the LCST but are ineffective surfactants above the LCST, resulting in emulsion fusion. We find that the transformations observed upon heating nanoemulsions above their surfactant's LCST can instead be induced at physiological temperatures through the addition of polymers and protein, rendering thermoresponsive materials "crowding responsive." We demonstrate that the cytosol is a stimulus for nanoemulsions, with droplet fusion occurring upon injection into cells of living zebrafish embryos. This report sets the stage for classes of thermoresponsive materials to respond to macromolecule concentration rather than temperature changes.


Assuntos
Nanoestruturas , Polímeros Responsivos a Estímulos , Animais , Emulsões , Polímeros , Tensoativos , Temperatura , Água , Peixe-Zebra
3.
J Am Chem Soc ; 142(37): 16072-16081, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32808518

RESUMO

The bioorthogonal nature of perfluorocarbons provides a unique platform for introducing dynamic nano- and microdroplets into cells and organisms. To monitor the localization and deformation of the droplets, fluorous soluble fluorophores that are compatible with standard fluorescent protein markers and applicable to cells, tissues, and small organisms are necessary. Here, we introduce fluorous cyanine dyes that represent the most red-shifted fluorous soluble fluorophores to date. We study the effect of covalently appended fluorous tags on the cyanine scaffold and evaluate the changes in photophysical properties imparted by the fluorous phase. Ultimately, we showcase the utility of the fluorous soluble pentamethine cyanine dye for tracking the localization of perfluorocarbon nanoemulsions in macrophage cells and for measurements of mechanical forces in multicellular spheroids and zebrafish embryonic tissues. These studies demonstrate that the red-shifted cyanine dyes offer spectral flexibility in multiplexed imaging experiments and enhanced precision in force measurements.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Fluorocarbonos/análise , Animais , Carbocianinas/síntese química , Corantes Fluorescentes/síntese química , Microscopia de Fluorescência , Estrutura Molecular , Imagem Óptica , Solubilidade , Peixe-Zebra
4.
J Org Chem ; 84(3): 1117-1125, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30620583

RESUMO

BN polystyrenes are an emerging class of polyolefins functionalized with aromatic side chains in which at least one CC bond is replaced with a BN bond. This class of structures exhibits unusual photophysical properties relative to organic polymers. BN polystyrenes serve as intermediates in the preparation of functional polymers, including stereoregular polar polyolefins. The consequences of BN for CC bond substitution on reactivity and properties are highlighted.

5.
Angew Chem Int Ed Engl ; 57(6): 1673-1677, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29266609

RESUMO

BN 2-vinylnaphthalene, a BN aromatic vinyl monomer, is copolymerized with styrene under free radical conditions. Oxidation yields styrene-vinyl alcohol (SVA) statistical copolymers with tunable hydroxy group content. Comprehensive spectroscopic investigation provides proof of structure. Physical properties that vary systematically with hydroxy content include solubility and glass transition temperature. BN aromatic polymers represent a platform for the preparation of diverse functional polymeric architectures via the remarkable reaction chemistry of C-B bonds.

6.
Chem Commun (Camb) ; 53(53): 7262-7265, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28590472

RESUMO

The gram-scale polymerization of a novel azaborine vinyl monomer is reported. We describe an efficient and high-yielding synthesis of B-vinyl-2,1-borazanaphthalene. Homopolymers and co-polymers with 2-vinylnaphthalene are characterized by heteronuclear NMR and absorbance spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...